Logo da Quero Bolsa
Como funciona
  1. Busque sua bolsa

    Escolha um curso e encontre a melhor opção pra você.


  2. Garanta sua bolsa

    Faça a sua adesão e siga os passos para o processo seletivo.


  3. Estude pagando menos

    Aí é só realizar a matrícula e mandar ver nos estudos.


Equação da hipérbole

Matemática - Manual do Enem
Marcus Vinicius Publicado por Marcus Vinicius
 -  Última atualização: 27/9/2022

Introdução

A equação de uma hipérbole tem duas variações, dependendo de onde se encontram os focos.

Índice

Equação da hipérbole com focos no eixo \(x\)

Se tivermos a seguinte configuração


de modo que

  • \(2a\) é a distância entre \(A_{1}\) e \(A_{2}\);
  • \(2b\) é a distância entre \(B_{1}\) e \(B_{2}\);
  • \(2c\) é a distância entre \(F_{1}\) e \(F_{2}\);

com \(c^{2}=a^{2}+b^{2}\), e sendo a origem do plano cartesiano o centro da hipérbole, então sua equação será

$$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$$

Por exemplo, uma hipérbole com os focos no eixo \(x\) e \(2a=4\) e \(2b=8\), então \(a=2\) e \(b=4\) tem equação:

$$\frac{x^{2}}{2^{2}}-\frac{y^{2}}{4^{2}}=1$$

$$\Rightarrow\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$$

Equação da hipérbole com focos no eixo \(y\)

Caso a hipérbole tenha focos no eixo das ordenadas:


a sua equação será

$$\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$$

Fórmulas

Exercício de fixação
Passo 1 de 3
Quero Bolsa

Se uma hipérbole tem foco no eixo das abscissas e sendo a distância focal igual a 4, então sabendo que o eixo imaginário vale 2 sua equação será

A \(\frac{x^{2}}{3}-\frac{y^{2}}{1}=1\)
B \(\frac{x^{2}}{3}+\frac{y^{2}}{1}=1\)
C \(\frac{x^{2}}{1}-\frac{y^{2}}{3}=1\)
D \(\frac{y^{2}}{1}-\frac{x^{2}}{3}=1\)
E \(\frac{y^{2}}{3}-\frac{x^{2}}{1}=1\)
Prepare-se para o Enem com a Quero Bolsa! Receba conteúdos e notícias sobre o exame diretamente no seu e-mail