Info Icon Ajuda Help Icon Ajuda
Matemática

Matriz transposta

Marcus Vinicius
Publicado por Marcus Vinicius
Última atualização: 15/4/2019

Introdução

Dada uma matriz \(A_{m\times n}\), indicamos por \(A^{t}_{n\times m}\) a matriz transposta de \(A\) a qual se obtém ao transformar as linhas da matriz \(A\) em colunas e vice-versa.

Por exemplo, tomando-se a matriz

$$A=\begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & -5 \end{bmatrix}$$

Então sua transposta será:

$$A^{t}=\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & -5 \end{bmatrix}$$

Ou seja, as linhas de \(A\) se tornam as colunas de \(A^{t}\).

Note ainda que a matriz \(A\) tem 2 linhas e 3 colunas; logo a sua transposta \(A^{t}\) possui o contrário: 3 linhas e 2 colunas.

Propriedades da matriz transposta

São válidos os seguintes resultados:

  • \((A^{t})^{t}\)=A\), isto é, a transposta de uma transposta é a própria matriz original
  • \((A+B)^{t}=A^{t}+B^{t}\)
  • \((A\cdot B)^{t}=B^{t}\cdot A^{t}\)
  • \(\det(A^{t})=\det(A)\)
  • Se tomarmos a matriz

    $$A=\begin{bmatrix} 3 & 5 \\ -1 & 4 \end{bmatrix}$$

    Temos que

    $$\det(A)=3\cdot4-5\cdot(-1)=12+5\Rightarrow\det(A)=17$$

    Agora, a partir de sua transposta

    $$A^{t]=\begin{bmatrix} 3 & -1 \\ 5 & 4 \end{bmatrix}$$

    Observamos que seu determinante vale

    $$\det(A^{t})=3\cdot4-(-1)\cdot5=12+5\Rightarrow\det(A^{t})=17$$

    Exemplificando assim a propriedade IV.

    Matriz simétrica

    Uma matriz \(A\) é dita simétrica se ela for igual a sua transposta, ou seja:

    $$A=A^{t}$$

    Evidentemente, pela definição de matriz transposta, uma condição necessária para que uma matriz seja simétrica é de que ela seja quadrada, isto é, tenha o mesmo número de linhas e de colunas.

    Por exemplo, ao tomarmos a matriz

    $$A=\begin{bmatrix} 3 & 1 & -4 \\ 1 & 7 & 6 \\ -4 & 6 & -2 \end{bmatrix}$$

    É transposta pois, claramente, \(A=A^{t}\).


    Exercícios

    Exercício 1
    (FEI)

    Dada a matriz \(A=\begin{bmatrix 2 & 3 \\ -1 & 2 \end{bmatrix}\), sendo \(A^{t}\) sua transposta, o determinante da matriz \(A\cdot A^{t}\) é

    Ilustração: Rapaz corpulento de camiseta, short e tênis acenando

    Inscreva-se abaixo e receba novidades sobre o Enem, Sisu, Prouni e Fies:

    Carregando...