Info Icon Ajuda Help Icon Ajuda
Matemática

Pirâmide

Marcus Vinicius
Publicado por Marcus Vinicius
Última atualização: 12/12/2018

Introdução

Considere um polígono convexo em um plano, de modo que todos os seus pontos estejam ligados a um ponto fora desse plano:


Ao conjunto acima, damos o nome de pirâmide.

O polígono do plano é chamado de base da pirâmide e o ponto fora dele é dito ser o vértice da pirâmide. Temos, ainda, a altura da pirâmide, que corresponde à menor distância entre o vértice da pirâmide e o plano da base.

Os triângulos que se formam quando ligamos os vértices da base com o vértice da pirâmide são chamados de faces da pirâmide.

Área de uma pirâmide

A área de uma pirâmide é dada pela soma da área da base com a área lateral, que corresponde à soma das áreas de todas as faces.

$$A_{t}=A_{b}+A_{L}$$

Volume de uma pirâmide

Se \(h\) for a medida da altura pirâmide, então seu volume será:

$$V=\frac{1}{3}\cdot A_{b}\cdot h$$

Por exemplo, na pirâmide de base quadrada a seguir, temos que a sua altura vale 5cm e, as arestas da base, 3cm.


Logo,

$$A_{b}=3^{2}=9$$

Portanto, seu volume será de

$$V=\frac{1}{3}\cdot9\cdot5\Rightarrow V=15cm^{3}$$

Pirâmide regular

Chamamos de pirâmide regular aquela cujo polígono da base é regular, ou seja, possui todos os lados de mesma medida.

Deste modo, conseguimos mostrar que os triângulos das faces são isósceles, de modo que a base de cada triângulo corresponde ao lado do polígono.

Sendo a base um polígono regular, podemos aplicar o conceito do apótema da base, que é a distância do centro do polígono ao seu lado. 


E sendo \(H\) a medida da altura de uma face, é possível mostrar, por meio do Teorema de Pitágoras, que:

$$H^{2}=h^{2}+a^{2}$$

Considerando que \(h\) é a medida da altura da pirâmide. Neste caso, em particular, a altura \(H\) da face é chamada de apótema da pirâmide.

Por exemplo, se uma pirâmide regular tiver a sua base formada por um quadrado de lado 6cm, então seu apótema mede

$$a=3cm$$

E, supondo que a altura da pirâmide seja igual a

$$h=4cm$$

Então, o apótema da pirâmide valerá

$$H^{2}=4^{2}+3^{2}\Rightarrow H=5cm$$

Fórmulas



Exercícios

Exercício 1
(CESGRANRIO)

Uma pirâmide quadrangular regular tem todas as arestas iguais a \(x\). O volume dessa pirâmide é:

Ilustração: Rapaz corpulento de camiseta, short e tênis acenando

Inscreva-se abaixo e receba novidades sobre o Enem, Sisu, Prouni e Fies:

Carregando...