Logo da Quero Bolsa
Como funciona
  1. Busque sua bolsa

    Escolha um curso e encontre a melhor opção pra você.


  2. Garanta sua bolsa

    Faça a sua adesão e siga os passos para o processo seletivo.


  3. Estude pagando menos

    Aí é só realizar a matrícula e mandar ver nos estudos.


Action

Variância

Matemática - Manual do Enem
Marcus Vinicius Publicado por Marcus Vinicius
 -  Última atualização: 22/3/2024

Introdução

A variância mede a dispersão dos dados em relação à média. Calcula-se como a média dos quadrados das diferenças entre cada valor e a média do conjunto. Em exemplos práticos, se a variância é baixa, os dados são mais homogêneos; se alta, indicam maior dispersão. Serve para avaliar a consistência ou variabilidade de um conjunto de dados.

Índice

O que é variância?

A variância, assim como o desvio padrão, é uma das medidas de dispersão, que mostra o comportamento dos dados de uma amostra em relação a uma medida central.

Através da variância, podemos verificar o quão próximo estão os valores de um valor central, que neste caso, é a média desses valores.

Ou seja, quanto maior a variância, mais distantes da média estão os valores da amostra e, evidentemente, caso contrário, isto é, quanto menor o valor da variância, mais próximos os dados da amostra estão da medida central.

Há duas fórmulas muito similares de variância. Se \(x_{1},\ldots,x_{n}\) forem os valores dos dados de uma amostra com \(n\) elementos e com média \(\bar{x}\), então a variância amostral de tais valores será:

$$\sigma^{2}=\frac{(x_{1}-\bar{x})^{2}+\ldots+(x_{n}-\bar{x})^{2}}{n-1}$$

E, como o próprio nome diz, ela é utilizada para calcular a variância de uma amostra.

Agora, caso queiramos determinar de uma variância de toda uma população, então usamos a variância populacional:

$$\sigma^{2}=\frac{(x_{1}-\bar{x})^{2}+\ldots+(x_{n}-\bar{x})^{2}}{n}$$

Vamos supor que tenhamos uma população de 5 elementos, cujos dados encontrados sejam 3, 4, 1, 2 e 6. Sua média será

$$\bar{x}=\frac{3+4+1+2+6}{5}=\frac{16}{5}\Rightarrow\bar{x}=3,2$$

Para calcularmos sua variância populacional, basta utilizarmos a fórmula anterior:

$$\sigma^{2}=\frac{(3-3,2)^{2}+(4-3,2)^{2}+(1-3,2)^{2}+(2-3,2)^{2}+(6-3,2)^{2}}{5}=\frac{14,8}{5}$$

ou seja

$$\sigma^{2}=2,96$$

Fórmulas

Exercício de fixação
Passo 1 de 3
Quero Bolsa

As notas de um grupo de alunos foram 4, 5, 2, 7 e 6. O valor aproximado da variância desses dados é:

A 2,96
B 2,97
C 2,98
D 2,99
E 3,00
Prepare-se para o Enem com a Quero Bolsa! Receba conteúdos e notícias sobre o exame diretamente no seu e-mail