Uma vez que descrevemos a primeira lei da termodinâmica como um balanço de energia, o funcionamento de uma máquina térmica seria transformar calor - geralmente obtido através da queima de um combustível - em trabalho mecânico.
Uma máquina térmica com eficiência 100% transformaria todo calor em trabalho, sem perdas, mas algumas limitações são intrínsecas aos sistemas termodinâmicos.
Uma dessas limitações consiste no sentido espontâneo dos processos, por exemplo uma gota de tinta que se difunde em um líquido espontaneamente e não volta a se tornar uma gota. O calor flui espontaneamente da temperatura mais quente para a mais fria, e o contrário não ocorre espontaneamente.
Desta forma, ciente das limitações de um sistema, podemos utilizar uma interpretação do enunciado proposto por Lorde Kevin e Max Planck para a segunda lei da termodinâmica:
É impossível para qualquer sistema, operando em um ciclo termodinâmico, retirar calor de uma fonte e convertê-lo integralmente em trabalho.
Desse modo, é impossível que todo o calor seja transformado unicamente em trabalho. A eficiência pode ser contabilizada como:
\(\eta = \frac{Trabalho \,util}{Calor fornecido} = \frac{W}{Q_{1}} = \frac{Q_{1}-Q_{2}}{Q_{1}} =1 - \frac{Q_{2}}{Q_{1}}\)
Logo, pela segunda lei da termodinâmica, a eficiência de uma máquina térmica nunca alcançará 100%. Máquinas térmicas, geralmente, costumam apresentar rendimentos baixos, inferiores a 50%.
Entropia
Para tentar prever a espontaneidade dos processos, define-se a grandeza física entropia.
O sentido espontâneo dos processos prevê que a entalpia sempre aumenta, por exemplo quando o gelo - água em condição sólida com moléculas próximas umas das outras - se transforma em água líquida - moléculas mais distantes com mais liberdade-. Nesse processo espontâneo, dizemos que a entropia do sistema aumentou.
Logo, a entropia é uma grandeza que pode ser associada à “desordem” de um sistema, ou seja, quanto maior a entropia, mais “desorganizado” é o sistema.