📚 Você vai prestar o Enem? Estude de graça com o Plano de Estudo Enem De Boa 📚
📚 Você vai prestar o Enem? Estude de graça com o Plano de Estudo Enem De Boa 📚
Chama-se de matriz um conjunto de números dispostos em uma tabela e distribuídos em “m” linhas e “n” colunas (com “m” e “n” \(\in \mathbb{N}^{\ast }\)).
A adição e subtração de matrizes é calculada de forma simples e intuitiva. Basta somar ou subtrair os elementos correspondentes entre as matrizes, como veremos abaixo.
Mas atenção! É possível somar e subtrair apenas matrizes iguais em número de linhas e colunas, ok?
Dada as matrizes A, B e C a seguir, encontre a matriz A+B-C:
\(A=\begin{bmatrix} 1 & 3 \\ 0 & 6 \\ 16 & 9 \end{bmatrix} \qquad B=\begin{bmatrix} -2 & 1 \\ 11 & 6 \\ 13 & -5 \end{bmatrix} \qquad C=\begin{bmatrix} 0 & -3 \\ -2 & 18 \\ 24 & 3 \end{bmatrix}\)
Resolução: Vamos calcular a matriz pedida pelo enunciado. Como foi dito, basta somarmos (ou subtrairmos) os elementos correspondentes entre as matrizes:
\(A+B=\begin{bmatrix} 1 & 3 \\ 0 & 6 \\ 16 & 9 \end{bmatrix}+\begin{bmatrix} -2 & 1 \\ 11 & 6 \\ 13 & -5 \end{bmatrix}\rightarrow A+B=\begin{bmatrix} 1+(-2) & 3+1 \\ 0+11 & 6+6 \\ 16+13 & 9+(-5) \end{bmatrix}\rightarrow A+B=\begin{bmatrix} -1 & 4 \\ 11 & 12 \\ 29 & 4 \end{bmatrix}\)
Agora, devemos subtrair a matriz C do resultado encontrado:
\(A+B-C=\begin{bmatrix} -1 & 4 \\ 11 & 12 \\ 29 & 4 \end{bmatrix}-\begin{bmatrix} 0 & -3 \\ -2 & 18 \\ 24 & 3 \end{bmatrix}\rightarrow A+B-C=\begin{bmatrix} -1-0 & 4-(-3) \\ 11-(-2) & 12-18 \\ 29-24 & 4-3 \end{bmatrix}\rightarrow A+B-C=\begin{bmatrix} -1 & 7 \\ 13 & -6 \\ 5 & 1 \end{bmatrix}\)
🎯 Simulador de Notas de Corte Enem: Descubra em quais faculdades você pode entrar pelo Sisu, Prouni ou Fies 🎯
Uma matriz multiplicada por um número qualquer resulta em uma nova matriz com todos os seus elementos multiplicados por este número. Observe o exemplo abaixo:
Determine a matriz resultante da multiplicação entre 3 e a matriz A, indicada abaixo.
\(A=\begin{bmatrix} \frac{1}{2} & 3 \\ 0 & 14 \\ 5 & 3^{2} \end{bmatrix}\)
Resolução: fazendo os cálculos, temos:
\(3A=3\begin{bmatrix} \frac{1}{2} & 3 \\ 0 & 14 \\ 5 & 3^{2} \end{bmatrix}=\begin{bmatrix} 3\cdot \frac{1}{2} & 3\cdot 3 \\ 3\cdot 0 & 3\cdot 14 \\ 3\cdot 5 & 3\cdot 3^{2} \end{bmatrix}=\begin{bmatrix} \frac{3}{2} & 9 \\ 0 & 42 \\ 15 & 27 \end{bmatrix}\)
Essa é a parte mais importante do texto, sendo ela um conteúdo que geralmente aparece nos vestibulares e no ENEM.
Na multiplicação entre matrizes, é muito importante lembrar que o número de colunas da primeira matriz deve ser igual ao número de linhas da segunda matriz. Simbolicamente, podemos falar que para multiplicar as matrizes \(A_{M\times N}\) e \(B_{P\times Q}\) devemos ter \(N=P\). Assim, a matriz resultante do produto entre A e B será a matriz \(C_{M\times Q}\).
Os elementos da matriz C são obtidos por meio da soma dos produtos dos elementos correspondentes da i-ésima linha de A pelos elementos da j-ésima coluna B.
Ok, ok, no exemplo fica mais claro!
Determine o produto entre as matrizes A e B indicadas abaixo.
\(A=\begin{bmatrix} 5 & 13 \\ 1 & \frac{4}{3} \\ 2^{3} & 8 \end{bmatrix} \qquad B=\begin{bmatrix} 0 & -4 \\ 5 & \frac{2}{3} \end{bmatrix}\)
Resolução: como o número de colunas da matriz A (ou seja, 2) é igual ao número de linhas da matriz B (ou seja, 2), podemos efetuar o produto entre as matrizes. Vamos determinar o primeiro elemento da matriz C, ou seja, a matriz resultante:
\(A\cdot B=\begin{bmatrix} {\color{Red} 5} & {\color{Red} 13} \\ 1 & \frac{4}{3} \\ 2^{3} & 8 \end{bmatrix}\cdot \begin{bmatrix} {\color{Red}0} & -4 \\ {\color{Red}5} & \frac{2}{3} \end{bmatrix}=\begin{bmatrix} {\color{Red}5\cdot 0+13\cdot 5} & a \\ b & c \\ d & e \end{bmatrix}\)
Nessa linha de raciocínio, vamos calcular o próximo elemento:
Calculando o nosso terceiro elemento:
Repetimos esse processo até calcular todos os elementos, obtendo como resultado a matriz abaixo:
\(A\cdot B=\begin{bmatrix} 5 & 13 \\ 1 & \frac{4}{3} \\ 2^{3} & 8 \end{bmatrix}\cdot \begin{bmatrix} 0 & -4 \\ 5 & \frac{2}{3} \end{bmatrix}=\begin{bmatrix} 65 & -\frac{34}{3} \\ \\ \frac{20}{3} & -\frac{28}{9} \\ \\ 40 & -\frac{80}{3} \end{bmatrix}\)
Repare que a matriz resultante tem dimensões 3x2, pois o número de linhas de A é 3 e o número de colunas de B é 2.
📝 Você quer garantir sua nota mil na Redação do Enem? Baixe gratuitamente o Guia Completo sobre a Redação do Enem! 📝
Vamos listar três propriedades que são muito importantes no que diz respeito a multiplicação de matrizes:
Considere as matrizes \(A_{M\times N}, B_{N\times P} e C_{P\times Q}\), então:
\(ABC=A(BC)=(AB)C\)
Considere as matrizes \(A_{M\times N}, B_{M\times N} e C_{N\times P}\), então:
\((A+B)C=AC+BC\)
\(AB\neq BA\)
Vale ressaltar que além da não comutatividade entre o produto de matrizes, é possível que, mesmo que AB exista, BA não exista.
🎓 Você ainda não sabe qual curso fazer? Tire suas dúvidas com o Teste Vocacional Grátis do Quero Bolsa 🎓
Está precisando de uma ajuda nos estudos? Então, conheça o plano de estudo da Quero Bolsa: um material completo, com textos, vídeo-aulas e exercícios com resolução. Baixe o cronograma sem pagar nada clicando aqui.
Revisado por: Ferdinando Caíque Genghini Dantas Lobo
Formado em Matemática pela Universidade Estadual de Campinas (Unicamp), com mestrado na área pela Profmat - Unicamp. Atua como professor de Matemática desde 2012, nos colégios Asther (Campinas-SP) e Villa Lobos (Amparo-SP).
Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia calcular as médias anuais dessas disciplinas usando produto de matrizes. Todas as provas possuíam o mesmo peso, e a tabela que ele conseguiu é mostrada a seguir.
Para obter essas médias, ele multiplicou a matriz obtida a partir da tabela por: