Logo da Quero Bolsa
Como funciona
  1. Busque sua bolsa

    Escolha um curso e encontre a melhor opção pra você.


  2. Garanta sua bolsa

    Faça a sua adesão e siga os passos para o processo seletivo.


  3. Estude pagando menos

    Aí é só realizar a matrícula e mandar ver nos estudos.


Teorema de Tales

Matemática - Manual do Enem
Marcus Vinicius Publicado por Marcus Vinicius
 -  Última atualização: 27/9/2022

Introdução

Tales de Mileto foi um grande matemático, astrônomo e filósofo da Grécia Antiga e viveu antes de Cristo. Um dos seus resultados mais importantes, o Teorema de Tales, relaciona os segmentos correspondentes de duas (ou mais) retas transversais a um feixe de retas paralelas, obtendo-se assim relações de proporção entre tais medidas.

Mas antes de enunciá-lo e entendê-lo melhor, vamos relembrar o que são as retas paralelas e um feixe de retas paralelas.

Retas paralelas são aquelas que não se cruzam entre si, ao contrário de retas concorrentes, as quais possuem um ponto de intersecção, conforme demonstrado na figura a seguir, onde \( r\) e \( s\) são paralelas e \( u\) e \( v\), concorrentes.

📚 Você vai prestar o Enem? Estude de graça com o Plano de Estudo Enem De Boa 📚  

Chamamos de feixe de retas paralelas um conjunto de retas paralelas e coplanares (que estão no mesmo plano). E uma reta é dita transversal a esse feixe se ela for concorrente às retas deste feixe.

É importante notar que tais retas paralelas não precisam estar igualmente espaçadas, ou seja, o espaço entre duas não precisa ser igual para todas.

Observe que, ao traçarmos duas retas transversais em um feixe de retas paralelas, obtemos pontos correspondentes - que são pontos das transversais que se encontram numa mesma reta do feixe.

Temos, ainda, os segmentos correspondentes das duas retas transversais - que são aqueles cujos extremos são pontos correspondentes de tais retas.

Índice

O que é o Teorema de Tales?

A partir do que definimos anteriormente, estamos aptos a entender o Teorema de Tales: ele diz que a razão entre dois quaisquer segmentos correspondentes é constante, ou seja, existe uma proporção entre eles. Isto é, os segmentos correspondentes que surgem das retas transversais são proporcionais entre si.

A partir da figura acima, temos então:

$$ \frac{AB}{A’B’}=\frac{CD}{C’D’}=\frac{AC}{A’C’}=\frac{BD}{B’D’}=\ldots$$

🎯 Simulador de Notas de Corte Enem: Descubra em quais faculdades você pode entrar pelo Sisu, Prouni ou Fies 🎯  

Semelhança de triângulos

Observe que o Teorema de Tales também pode ser utilizado em um triângulo:

Considerando-se o triângulo \( ABC\) a seguir e tomando-se os lados \( \bar{AB}\) e \( \bar{AC}\) como as transversais, ao traçarmos uma reta paralela ao terceiro lado \( \bar{BC}\) temos que:

$$ \frac{AM}{MB}=\frac{AN}{NC}=\frac{AB}{AC}$$

Teorema da bissetriz interna

Há dois resultados que são consequências do Teorema de Tales envolvendo bissetrizes de um triângulo. O primeiro é o teorema da bissetriz interna.

A bissetriz de um ângulo é uma ceviana, isto é, um segmento de reta com origem no vértice de um triângulo e final no lado oposto a este vértice, que divide o ângulo ao meio.

Sendo \( ABC\) um triângulo e considerando \( \bar{AS}\) a bissetriz do ângulo \( B\hat{A}C\), como na figura a seguir:

Evidentemente, estamos considerando a bissetriz interna do ângulo \( \hat{A}\), isto é, aquela relacionado ao ângulo interno do triângulo.

Vamos supor agora que as medidas dos lados do triângulo sejam \( a, b\) e \( c\). Note que a bissetriz \( \bar{AS}\) divide o lado \( \bar{BC}\) em duas partes, as quais diremos que têm medidas \( x\) e \( y\):

O teorema da bissetriz interna indica uma proporção entre o lado oposto ao vértice da bissetriz e os outros dois lados adjacentes:

$$ \frac{c}{x}=\frac{b}{y}$$

Teorema da bissetriz externa

Uma bissetriz externa é aquela relacionada ao ângulo externo de um triângulo. 

Consideremos, então, o triângulo \( ABC\) a seguir e a bissetriz do ângulo externo ao ângulo \( \hat{A}\):

Podemos prolongar o lado \( \bar{BC}\) de modo que ele se encontre com a bissetriz no ponto \( S\):

Chamando de \( x\) a distância do vértice \( B\) até \( S\) e de \( y\) a distância do vértice \( C\) até \( S\) e sendo as medidas dos lados do triângulo dadas na figura abaixo, o teorema da bissetriz externa relaciona a razão entre tais distâncias e as medidas dos lados adjacentes ao ângulo interno \( \hat{A}\):

$$\frac{c}{x}=\frac{b}{y}$$

Ou seja, existe uma proporção entre tais valores.

Fórmulas

🎓 Você ainda não sabe qual curso fazer? Tire suas dúvidas com o Teste Vocacional Grátis do Quero Bolsa 🎓 

Exercício de fixação
Passo 1 de 3
UFRJ

Pedro está construindo uma fogueira representada pela figura abaixo. Ele sabe que a soma de \( x\) com \( y\) é 42 e que as retas \( r,s\) e \( t\) são paralelas.

A diferença \( x-y\) é igual a:

A 2
B 4
C 6
D 10
E 12
Prepare-se para o Enem com a Quero Bolsa! Receba conteúdos e notícias sobre o exame diretamente no seu e-mail